Math 245B Lecture 9 Notes

Daniel Raban

January 28, 2019

1 The Baire Category Theorem

1.1 Statement and proof of Baire's theorem

On \mathbb{R} , is $\mathbb{1}_{\mathbb{Q}}$ a pointwise limit of continuous functions? We will be able to answer this question and many more.

Let (X, ρ) be a complete metric space. Recall that $A \subseteq X$ is **nowhere dense** if $(\overline{A})^o = \emptyset$.

Theorem 1.1 (Baire category theorem). Let $(U_n)_{n=1}^{\infty}$ be a sequence of dense, open subsets of X. Then $\bigcap_{n=1}^{\infty} U_n$ is still dense in X. Equivalently, X is not a countable union of nowhere dense sets.

Remark 1.1. The 2nd statement is the same statement but taking complements of all the sets involved.

Remark 1.2. This does not hold for uncountable intersections. For example, if X = [0, 1], we can define $U_x = [0, 1] \setminus \{x\}$ for each $x \in X$. Then $\bigcup_x U_x = \emptyset$.

Proof. Let $x \in X$, $\delta > 0$. We must show that $B_{\delta}(x) \cap \bigcap_{n=1}^{\infty} U_n \neq \emptyset$. First, $B_{\delta}(x) \cap U_1 \neq \emptyset$; this intersection is open. Pick $B_{2\delta_1}(x_1) \subseteq B_{\delta}(x) \cap U_1$, where $2\delta_1 \leq \delta$. Then $B_{\delta_1}(x_1) \cap U_2 \neq \emptyset$; this intersection is also open. Pick $B_{2\delta_2}(x_2) \subseteq B_{\delta_1}(x_1) \cap U_2$ such that $2\delta_2 \leq \delta_1$. Continue this recursively. The end result is we get balls $B_{\delta_i}(x_i)$ with $i \geq 1$ such that $B_{2\delta_{i+1}}(x_{i+1}) \subseteq B_{\delta_i}(x_i) \cap U_{i+1}$ and $\delta_{u+1} \leq \delta_i/2$.

This tells us that $\delta_i \leq C/2^i$ for some constant C. We also get that $B_{\delta_j}(x_j) \subseteq B_{\delta_i}(x_i)$ for all $j \geq i$. So $\rho(x_j, x_i) < \delta_i$ for all $j \geq i \geq 1$, which means that the sequence $(x_i)_{i=1}^{\infty}$ is Cauchy. By completeness there exists a limit $y = \lim_i x_i$. Moreover, $y \in \overline{B_{\delta_i}(x_i)} \subseteq B_{2\delta_i}(x_i) \subseteq U_i$ for all i. Similarly, $y \in B_{\delta}(x)$.

The same proof gives a slightly more general statement.

Theorem 1.2. If $V \subseteq X$ is open with $V \neq \emptyset$ and $(U_n)_{n=1}^{\infty}$ is open such that $\overline{U_n \cap V} \supseteq V$ for all n. Then $\overline{(\bigcap_{n=1}^{\infty} U_n) \cap V} \supseteq V$.

1.2 Meager and residual sets

Definition 1.1. Let X be a topological space. Then $A \subseteq X$ is of **first category**¹ (or **meager**) if it is a bountable union of nowhere dense sets. $A \subseteq X$ is of **second category** (or **non-meager**) otherwise. $A \subseteq X$ is **co-meager** (or **residual**) if A^c is a meager set.

Example 1.1. The ambient space is important. \mathbb{N} is meager inside \mathbb{R} but residual in \mathbb{N} .

Corollary 1.1. Let (X, ρ) be a complete metric space.

- 1. If $X = \bigcup_{n=1}^{\infty} F_n$, where each F_n is closed, and $U \subseteq X$ is a nonempty open set, then there exists a nonempty open $V \subseteq U$ and $n \in \mathbb{N}$ such that $V \subseteq F_n^o$.
- 2. If $X = \bigcup_{n=1}^{\infty} A_n$, and $U \subseteq X$ is a nonempty open set, then there exists a nonempty open $V \subseteq U$ and $n \in \mathbb{N}$ such that $V \subseteq (\overline{A_n})^o$.
- 3. The collection of residual sets is closed under countable intersections.
- 4. The collection of meager sets is closed under countable unions.

Corollary 1.2. If $\mathbb{R} \setminus \mathbb{Q} = \bigcup_{n=1}^{\infty} E_n$, then there exists an *n* such that $\overline{E_n} \supseteq (a, b)$ for some a < b.

Proof. The given condition implies that $\mathbb{R} = \bigcup_m \{q_m\} \cup \bigcup_{n=1}^{\infty} E_n$, where $(q_m)_m$ is an enumeration of \mathbb{Q} . Now apply Baire category. Either some $\{q_m\}$ or some E_n is dense in some (a, b). This cannot be any of the $\{q_m\}$.

Corollary 1.3. \mathbb{Q} is not the countable intersection of dense open sets.

1.3 The Baire-Osgood theorem

Theorem 1.3 (Baire-Osgood). Let (X, ρ) be a complete metric space, and let $(f_n)_n \subseteq C(X, \mathbb{R})$ be such that $f_n \to f$ pointwise. Let A be the set of continuity points of f. Then A is residual.

Proof. Call the **oscillation** of f at $x \in X$

$$\omega_f(x) := \inf_{\delta > 0} \sup_{y, z \in B_\delta(x)} |f(y) - f(z)|.$$

f is continuous at A if and only if $\omega_f = 0$. So $X \setminus A = \{x : \omega_f(x) \neq 0\} = \bigcup_{k=1}^{\infty} \{x : \omega_f \ge 1/k\}$. By the Baire category theorem, it is enough to show that $\{x : \omega_f(x) > \varepsilon\}$ is closed and nowhere dense for all $\varepsilon > 0$.

To show that this is closed, let $x \notin \{x : \omega_f(x) > \varepsilon\}$. That is, let $\omega_f(x) < \varepsilon$. Then there exist $\delta > 0$ and $\varepsilon < \varepsilon$ such that $|f(y) - f(z)| \le \varepsilon'$ for all $y, z \in B_{\delta}(x)$. If $x' \in B_{\delta/2}(x)$, then

¹This was Baire's original terminology. I think meager is a much more intuitive term, though.

 $B_{\delta/2}(x') \subseteq B_{\delta}(x)$. Then for all $y, z \in B_{\delta/2}(x')$, we have $y, z \in B_{\delta}(x)$. So $|f(y) - f(z)| \subseteq \varepsilon$; i.e. $\omega_f(x') \leq \varepsilon' < \varepsilon$. So $\{x : \omega_f(x) < \varepsilon\}$ is open.

Now let's show that $\{x : \omega_f(x) > \varepsilon\}$ is nowhere dense. Suppose U is a nonempty open set. Let $E_n := \bigcap_{i,j \ge n} \{x : |f_i(x) - f_j(x)| \le \varepsilon\}$. These are closed, and $X = \bigcup_n E_n$. Then there exists an n and a nonempty open set $V \subseteq U \cap E_n^o$ containing $B_{\delta}(x) \ni y, z$. Then $|f_i(y) - f(y)| \le \varepsilon$ for all $i \ge n$. Also, $\omega_f(x) = 0$, so there exists $|delta'| < \delta$ such that $|f_i(y) - f_i(z)| \le \varepsilon$ for all $y, z \in B_{\delta'}(x)$. By the triangle inequality, $|f(y) - f(z)| \le 3\varepsilon$. This is a contradiction because $|f(y) - f(z)| \ge 4\varepsilon$.

Corollary 1.4. $\mathbb{1}_{\mathbb{Q}}$ is not the pointwise limit of continuous functions.

Proof. $\mathbb{1}_{\mathbb{Q}}$ is not continuous anywhere.